Scientific publications


Analysis of stress and strain fields

  1. Abolfathian, N., Martínez-Garzón, P., Ben-Zion, Y., 2018. Spatiotemporal Variations of Stress and Strain Parameters in the San Jacinto Fault Zone. Pure Appl. Geophys. https://doi.org/10.1007/s00024-018-2055-y
  2. Abolfathian, N., Martínez‐Garzón, P., Ben‐Zion, Y., 2020. Variations of Stress Parameters in the Southern California Plate Boundary Around the South Central Transverse Ranges. Journal of Geophysical Research: Solid Earth 125, e2020JB019482. https://doi.org/10.1029/2020JB019482
  3. Ickrath, M., Bohnhoff, M., Dresen, Martínez-Garzón, P., G., Bulut, F., Kwiatek., G. and Germer, O. (2015). Detailed analysis of spatiotemporal variations of the stress field orientation along the Izmit-Düzce rupture in NW Turkey from inversion of first motion polarity data, Geophys. J. Int., 202(3), 2120–2132, doi:10.1093/gji/ggv273.
  4. Kılıç, T., Kartal, R.F., Kadirioğlu, F.T., Bohnhoff, M., Nurlu, M., Acarel, D., Martínez-Garzón, P., Dresen, G., Özsarac, V., Malin, P.E., 2020. Geophysical Borehole Observatory at the North Anatolian Fault in the Eastern Sea of Marmara (GONAF): initial results. J Seismol. https://doi.org/10.1007/s10950-020-09907-6
  5. Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., Dresen, G. (2013). Stress tensor changes related to fluid injection at The Geysers geothermal field, California, Geophys. Res. Lett. 40, 2596–2601, doi:10.1002/grl.50438.
  6. Martínez-Garzón, P., V. Vavryčuk, G. Kwiatek, and M. Bohnhoff (2016), Sensitivity of stress inversion of focal mechanisms to pore pressure changes, Geophys. Res. Lett., 2016GL070145, doi:10.1002/2016GL070145.
  7. Martínez-Garzón, P., Heidbach, O., Bohnhoff, M., (2019) Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms, GPS data and shear-wave splitting. Tectonophysics, volume 774, 2020, 228286, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2019.228286.
  8. Santoyo M.A., P. Martínez-Garzón, A. García-Jerez and F. Luzón (2016). Surface Dynamic Deformation Estimates From Seismicity Near the Itoiz Reservoir, Northern Spain. 20: 1021. https://doi.org/10.1007/s10950-016-9578-4.
  9. Wollin, C., Vavryčuk, V., Bohnhoff, M., Martínez-Garzón, P. (2018). Stress Inversion of Regional Seismicity in the Sea of Marmara Region, Turkey, Pure Appl. Geophys., doi:10.1007/s00024-018-1971-1.
  10. Ziegler M. O., Heidbach, O., Zang, A., Martínez-Garzón, P., Bohnhoff, M. (2017). Estimation of the differential stress from the stress rotation angle in low permeable rock, Geophys. Res. Lett., 44, doi:10.1002/2017GL073598.
  11. Bohnhoff, M., Martínez-Garzón, P., & Ben-Zion, Y. (2024). Global Warming Will Increase Earthquake Hazards through Rising Sea Levels and Cascading Effects. Seismological Research Letters, 95, 2571–2576. https://doi.org/10.1785/0220240100
  12. Martínez-Garzón, P., Meier, M.-A., Collettini, C., Lanza, F., & Dresen, G. (2025). Stress Heterogeneities Governed by Fault Structure and Stress Transfer: The 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 130, e2024JB029763. https://doi.org/10.1029/2024JB029763

Analysis of faulting mechanisms and moment tensors

  1. Bentz, S., Martínez‐Garzón, P., Kwiatek, G., Bohnhoff, M., Renner, J. (2018). Sensitivity of Full Moment Tensors to Data Preprocessing and Inversion Parameters: A Case Study from the Salton Sea Geothermal Field. Bulletin of the Seismological Society of America,doi:10.1785/0120170203
  2. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., Dresen, G. (2016). Impact of fluid injection on fracture reactivation at The Geysers geothermal field, J. Geophys. Res. Solid Earth, 121(10), 2016JB013137, doi:10.1002/2016JB013137.
  3. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., Dresen, G. (2017). Volumetric components in the earthquake source related to fluid injection and stress state, Geophys. Res. Lett., 44(2), 800–809, doi:10.1002/2016GL071963.
  4. Roselli, P., Improta, L., Kwiatek, G., Martínez-Garzón, P., Saccorotti, G., & Lombardi, A. M. (2023). Source mechanisms and induced seismicity in the Val d’Agri Basin (Italy). Geophysical Journal International, 234(3), 1617–1627. https://doi.org/10.1093/gji/ggad155
  5. Martínez-Garzón, P., Becker, D., Jara, J., Chen, X., Kwiatek, G., & Bohnhoff, M. (2023). The 2022 MW 6.0 Gölyaka–Düzce earthquake: an example of a medium-sized earthquake in a fault zone early in its seismic cycle. Solid Earth, 14, 1103–1121. https://doi.org/10.5194/se-14-1103-2023
  6. Chen, X., Martínez-Garzón, P., Kwiatek, G., Ben-Zion, Y., Bohnhoff, M., & Cotton, F. (2025). Rupture Directivity of Moderate Earthquakes Along the Main Marmara Fault Suggests Larger Ground Motion Toward Istanbul. Geophysical Research Letters, 52, e2024GL111460. https://doi.org/10.1029/2024GL111460
  7. Görgün, B., Yalçınkaya, E., Görgün, E., Bohnhoff, M., Martínez-Garzón, P., & Alp, H. (2025). Investigation of fault zone head waves along the 1912 Mw 7.4 Şarköy–Mürefte (Ganos) earthquake rupture zone in NW Türkiye. Geophysical Journal International, 242, 1–18. https://doi.org/10.1093/gji/ggaf148
  8. Meier, M.-A., Lanza, F., Martínez-Garzón, P., & Chiaraluce, L. (2025). Insights into Extensional Tectonics from a Large Deep Learning Focal Mechanism Catalog. Bulletin of the Seismological Society of America, 1–15. https://doi.org/10.1785/0120250103

Maximum earthquake magnitude

  1. Bentz, S., Kwiatek, G., Martínez-Garzón, P., Bohnhoff, M., & Dresen, G.. (2020). Seismic moment evolution during hydraulic stimulations. Geophysical Research Letters, 47, e2019GL086185. https://doi.org/10.1029/2019GL086185 
  2. Bohnhoff, M., Martínez-Garzón, P., Bulut, F., Stierle, E., Ben-Zion, Y. (2016). Maximum earthquake magnitudes along different sections of the North Anatolian fault zone, Tectonophysics, 674, 147–165, doi:10.1016/j.tecto.2016.02.028.
  3. Kwiatek, G., Martínez-Garzón, P., Dresen, G., Bohnhoff, M., Sone, H. and Hartline C. (2015). Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field, J. Geophys. Res. Solid Earth, 2015JB012362, doi:10.1002/2015JB012362.
  4. Martínez-Garzón, P., Bohnhoff, M., Ben-Zion, Y., Dresen, G. (2015). Scaling of maximum observed magnitudes with geometrical and stress properties of strike-slip faults, Geophys. Res. Lett., 2015GL066478, doi:10.1002/2015GL066478.

Detection and analysis of aseismic slip

  1. Becker, D., Martínez-Garzón, P., Wollin, C., Kılıç, T., & Bohnhoff, M. (2023). Variation of Fault Creep Along the Overdue Istanbul-Marmara Seismic Gap in NW Türkiye. Geophysical Research Letters, 50(6), e2022GL101471. https://doi.org/10.1029/2022GL101471
  2. Bohnhoff, M., Wollin, C., Domigall, D., Küperkoch, L., Martínez-Garzón, P., Kwiatek, G., Dresen, G., Malin, P.E. (2017). Repeating Marmara Sea Earthquakes: Indication for fault creep, Geophysical Journal International 169, doi:10.1093/gji/ggx169.
  3. Durand, V., Bentz, S., Kwiatek, G., Dresen, G., Wollin, C., Heidbach, O., Martínez‐Garzòn, P., Cotton, F., Nurlu, M., Bohnhoff, M., 2020. A Two‐Scale Preparation Phase Preceded an Mw 5.8 Earthquake in the Sea of Marmara Offshore Istanbul, Turkey. Seismological Research Letters 91, 3139–3147. https://doi.org/10.1785/0220200110
  4. Durand, V., Gualandi, A., Ergintav, S., Kwiatek, G., Haghshenas, M., Motagh, M., Dresen, G. and Martínez-Garzón, P. (2022). Deciphering aseismic deformation along submarine fault branches below the eastern Sea of Marmara (Turkey): Insights from seismicity, strainmeter, and GNSS data. Earth and Planetary Science Letters, 594, 117702. https://doi.org/10.1016/j.epsl.2022.117702
  5. Guérin-Marthe, S., Kwiatek, G., Wang, L., Bonnelye, A., Martínez-Garzón, P., & Dresen, G. (2023). Preparatory Slip in Laboratory Faults: Effects of Roughness and Load Point Velocity. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB025511. https://doi.org/10.1029/2022JB025511
  6. Martínez-Garzón, P., Bohnhoff., M., Mencin, D., Kwiatek, G., Dresen, G., Hodkingson, K., Nurlu, M., Kadirioglu, F. T., Kartal, R. F. Slow-slip along the eastern Sea of Marmara seismic gap offshore Istanbul in conjunction with enhanced seismic moment release, Earth and Planetary Science Letters, 510, 209–218. https://doi.org/10.1016/j.epsl.2019.01.001

Controlled fluid-injection experiments and in-situ experiments

  1. Amemoutou, A., Martínez-Garzón, P., Kwiatek, G., Rubinstein, J. L., & Bohnhoff, M. (2021). Earthquake Source Mechanisms and Stress Field Variations Associated With Wastewater-Induced Seismicity in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 126(7), e2020JB021625. https://doi.org/10.1029/2020JB021625
  2. Hofmann, H., Zimmermann, G., Farkas, M., Huenges, E., Zang, A., Leonhardt, M., Kwiatek, G., Martínez-Garzón, P., Bohnhoff, M., Min, K. B., Fokker, P., Westaway, R., Bethmann, F., Meier, P, Yoon, K. S., Choi, J. W., Lee, T. J., Kim, K. Y. First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea. Geophys J Int 217, 926–949. https://doi.org/10.1093/gji/ggz058.
  3. Kwiatek, G., Martínez-Garzón, P., Plenkers, K., Leonhardt, M., Zang, A., von Specht, S., Dresen, G., Bohnhoff, M., 2018. Insights Into Complex Subdecimeter Fracturing Processes Occurring During a Water Injection Experiment at Depth in Äspö Hard Rock Laboratory, Sweden. Journal of Geophysical Research: Solid Earth 123, 6616–6635. https://doi.org/10.1029/2017JB014715
  4. Kwiatek, G., Saarno, T., Ader, T., Bluemle, F., Bohnhoff, M., Chendorain, M., M., Dresen, G., Heikkinen, P., Kukkonen, I., Leary, P., Leonhardt, M., Malin, P., Martínez-Garzón, P., Passmore, K., Passmore, P., Valenzuela, S., Wollin, C.  (2019). Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Science Advances, 5(5), eaav7224. https://doi.org/10.1126/sciadv.aav7224
  5. Leonhardt, M., Kwiatek, G., Martínez-Garzón, P., Bohnhoff, M., Saarno, T., Heikkinen, P., & Dresen, G. (2021). Seismicity during and after stimulation of a 6.1 km deep enhanced geothermal system in Helsinki, Finland. Solid Earth, 12(3), 581–594. https://doi.org/10.5194/se-12-581-2021
  6. Martínez-Garzón, P., M. Bohnhoff, G. Kwiatek, G. Zambrano-Narváez, R. Chalaturnyk (2013). Microseismic monitoring of CO2 injection at the Penn West EOR Pilot, Canada: Implications for detection of wellbore leakage. Sensors, 2013, 13(9), 11522-11538; https://doi.org/10.3390/s130911522.
  7. Martínez-Garzón, P., Kwiatek, G., Bentz, S., Bohnhoff, M., Dresen, G., 2020. Induced earthquake potential in geothermal reservoirs: Insights from The Geysers, California. The Leading Edge 39, 873–882. https://doi.org/10.1190/tle39120873.1

Statistical properties of seismicity catalogs

  1. Blanke, A., Kwiatek, G., Martínez‐Garzón, P., & Bohnhoff, M. (2019). Sensitivity and Stability Analysis of Coda Quality Factors at The Geysers Geothermal Field, California. Bulletin of the Seismological Society of America, 109(3), 959–975. https://doi.org/10.1785/0120180219
  2. Bocchini, G. M., Martínez-Garzón, P., Verdecchia, A., Harrington, R. M., Bohnhoff, M., Turkmen, T., & Nurlu, M. (2022). Direct Evidence of a Slow-Slip Transient Modulating the Spatiotemporal and Frequency-Magnitude Earthquake Distribution: Insights From the Armutlu Peninsula, Northwestern Turkey. Geophysical Research Letters, 49(18), e2022GL099077. https://doi.org/10.1029/2022GL099077
  3. Kwiatek, G., Martínez-Garzón, P., Davidsen, J., Malin, P., Karjalainen, A., Bohnhoff, M., & Dresen, G. (2022). Limited Earthquake Interaction During a Geothermal Hydraulic Stimulation in Helsinki, Finland. Journal of Geophysical. https://doi.org/10.1029/2022JB024354
  4. Leptokaropoulos, K., Staszek, M., Lasocki, S., Martínez-Garzón, P., Kwiatek, G., Evolution of seismicity in relation to fluid injection in the North-Western part of The Geysers geothermal field, Geophys. J. Int., Vol 212, Issue 2, 1 February 2018, Pages 1157-1166, https://doi.org/10.1093/gji/ggx481.
  5. Raub, C., Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., Dresen, G. (2017). Variations of seismic b-value at different stages of the seismic cycle along the North Anatolian Fault Zone in northwestern Turkey, Tectonophysics, doi:10.1016/j.tecto.2017.05.028.
  6. Zali, Z., Martínez-Garzón, P., Kwiatek, G., Núñez-Jara, S., Beroza, G. C., Cotton, F., & Bohnhoff, M. (2025). Low-frequency tremor-like episodes before the 2023 Mw 7.8 Türkiye earthquake linked to cement quarrying. Scientific Reports, 15, 6354. https://doi.org/10.1038/s41598-025-88381-x

Seismic properties and source parameters of seismicity catalogs

  1. Bocchini, G. M., Martínez‐Garzón, P., Harrington, R. M., & Bohnhoff, M. (2021). Does Deep Tectonic Tremor Occur in the Central-Eastern Mediterranean Basin? Journal of Geophysical Research: Solid Earth, 126(1), 2020JB020448. https://doi.org/10.1029/2020JB020448
  2. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., Sone, H., Dresen, G., Hartline, C. (2014). Spatiotemporal changes, faulting regimes and source parameters of induced seismicity: A case study from The Geysers geothermal field, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2014JB011385.
  3. Staszek, M., Orlecka-Sickora, B., Leptokaropoulos, K., Kwiatek, G., Martínez-Garzón, P. (2017). Temporal static stress drop variations due to injection activity at The Geysers geothermal field, CA, Geophys. Res. Lett., 44, 7168–7176, doi:10.1002/2017GL073929.
  4. Wollin, C., Bohnhoff, M., Martínez-Garzón, P., Küperkoch, L., Raub, C., 2018. A unified earthquake catalogue for the Sea of Marmara Region, Turkey, based on automatized phase picking and travel-time inversion: seismotectonic implications. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.05.020
  5. Chen, X., Kwiatek, G., Bindi, D., Becker, D., Bohnhoff, M., Cotton, F., & Martínez-Garzón, P. (2025). Stress Drop Variations of (A)Seismic Fault Segments in the Sea of Marmara Region (Northwestern Türkiye) Supported by Different Methodological Approaches. Bulletin of the Seismological Society of America, 115(3), 1016–1030. https://doi.org/10.1785/0120240128

Development of methodologies or software

  1. Karimpouli, S., Caus, D., Grover, H., Martínez-Garzón, P., Bohnhoff, M., Beroza, G. C. Dresen, G., Goebel, T., Weigel, T., Kwiatek, G. Explainable machine learning for labquake prediction using catalog-driven features (in press at Earth and Plan. Sci. Lett.), https://doi.org/10.1016/j.epsl.2023.118383
  2. Kwiatek, G., P. Martínez‐Garzón, and M. Bohnhoff (2016), HybridMT: A MATLAB/Shell Environment Package for Seismic Moment Tensor Inversion and Refinement, Seismol. Res. Lett., doi:10.1785/0220150251.
  3. Martínez-Garzón, P., G. Kwiatek, M. Ickrath and M. Bohnhoff  (2014). MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling and a visualization tool. Seism. Res. Lett., 85, 4, doi:10.1785/0220130189.
  4. Martínez-Garzón, P., Y. Ben-Zion, N. Abolfathian, G. Kwiatek, and M. Bohnhoff (2016), A refined methodology for stress inversions of earthquake focal mechanisms, J. Geophys. Res. Solid Earth, 2016JB013493, doi:10.1002/2016JB013493.
  5. Karimpouli, S., Kwiatek, G., Martínez-Garzón, P., Dresen, G., & Bohnhoff, M. (2024). Unsupervised clustering of catalogue-driven features for characterizing temporal evolution of labquake stress. Geophysical Journal International, 237, 755–771. https://doi.org/10.1093/gji/ggae071
  6. Wang, Q., Zhang, Y., Wang, L., Yu, P., Guerin-Marthe, S., Peng, X., Xu, S., Martínez-Garzón, P., & Bohnhoff, M. (2024). Evolution of shear rupture along a prescribed interface using the discontinuous deformation analysis method. Rock Mechanics and Rock Engineering, 57, 7715–7726. https://doi.org/10.1007/s00603-024-03897-4
  7. Becker, D., McBrearty, I. W., Beroza, G. C., & Martínez-Garzón, P. (2024). Performance of AI-Based Phase Picking and Event Association Methods after the Large 2023 Mw 7.8 and 7.6 Türkiye Doublet. Bulletin of the Seismological Society of America, 114(5), 2457–2473. https://doi.org/10.1785/0120240017
  8. Karimpouli, S., Kwiatek, G., Ben-Zion, Y., Martínez-Garzón, P., Dresen, G., & Bohnhoff, M. (2024). Empowering Machine Learning Forecasting of Labquake Using Event-Based Features and Clustering Characteristics. Journal of Geophysical Research: Machine Learning and Computation, 1, e2024JH000160. https://doi.org/10.1029/2024JH000160

Earthquake clustering and nucleation

  1. Bentz, S., Martínez‐Garzón, P., Kwiatek, G., Dresen, G., Bohnhoff, M., (2019). Analysis of Microseismicity Framing ML > 2.5 Earthquakes at The Geysers Geothermal Field, California. Journal of Geophysical Research: Solid Earth 0. https://doi.org/10.1029/2019JB017716
  2. Malin, P.E., Bohnhoff, M., Blümle, F., Dresen, G., Martínez-Garzón, P., Nurlu, M., Ceken, U., Kadirioglu, F.T., Kartal, R.F., Kilic, T., Yanik, K., 2018. Microearthquakes preceding a M4.2 Earthquake Offshore Istanbul. Scientific Reports 8, 16176. https://doi.org/10.1038/s41598-018-34563-9
  3. Martínez‐Garzón, P., Zaliapin, I., Ben‐Zion, Y., Kwiatek, G., & Bohnhoff, M. (2018). Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California. Journal of Geophysical Research: Solid Earth, 0(0). https://doi.org/10.1029/2017JB014972.
  4. Martínez-Garzón, P., Ben-Zion, Y., Zaliapin, I., Bohnhoff, M., 2019. Seismic clustering in the Sea of Marmara: Implications for monitoring earthquake processes. Tectonophysics 768, 228176. https://doi.org/10.1016/j.tecto.2019.228176
  5. Martínez‐Garzón, P., Durand, V., Bentz, S., Kwiatek, G., Dresen, G., Turkmen, T., Nurlu, M. and Bohnhoff, M.; Near‐Fault Monitoring Reveals Combined Seismic and Slow Activation of a Fault Branch within the Istanbul–Marmara Seismic Gap in Northwest Turkey. Seismological Research Letters 2021; doi: https://doi.org/10.1785/0220210047
  6. Martínez-Garzón, P., Beroza, G. C., Bocchini, G. M., & Bohnhoff, M. (2023). Sea level changes affect seismicity rates in a hydrothermal system near Istanbul. Geophysical Research Letters, 50, e2022GL101258. https://doi.org/10.1029/2022GL101258
  7. Kwiatek, G., Martínez-Garzón, P., Becker, D., Dresen, G., Cotton, F., Beroza, G. C., Acarel, D., Ergintav, S., & Bohnhoff, M. (2023). Months-long seismicity transients preceding the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye. Nature Communications, 14, 7534. https://doi.org/10.1038/s41467-023-42419-8
  8. Kwiatek, G., Martínez-Garzón, P., Goebel, T., Bohnhoff, M., Ben-Zion, Y., & Dresen, G. (2024). Intermittent criticality multi-scale processes leading to large slip events on rough laboratory faults. Journal of Geophysical Research: Solid Earth, 129, e2023JB028411. https://doi.org/10.1029/2023JB028411
  9. Martínez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5, 120. https://doi.org/10.1038/s43247-024-01285-y
  10. Núñez-Jara, S., Martínez-Garzón, P., Kwiatek, G., Ben-Zion, Y., Dresen, G., Becker, D., Cotton, F., & Bohnhoff, M. (2025). Unraveling the spatiotemporal fault activation in a complex fault system: the run-up to the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye. Earth and Planetary Science Letters, 669, 119570. https://doi.org/10.1016/j.epsl.2025.119570